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Abstract: We demonstrate complete integrability of the Nambu-Goto equations for a sta-

tionary string in the general Kerr-NUT-(A)dS spacetime describing the higher-dimensional

rotating black hole. The stationary string in D dimensions is generated by a 1-parameter

family of Killing trajectories and the problem of finding a string configuration reduces to

a problem of finding a geodesic line in an effective (D − 1)-dimensional space. Resulting

integrability of this geodesic problem is connected with the existence of hidden symmetries

which are inherited from the black hole background. In a spacetime with p mutually com-

muting Killing vectors it is possible to introduce a concept of a ξ-brane, that is a p-brane

with the worldvolume generated by these fields and a 1-dimensional curve. We discuss

integrability of such ξ-branes in the Kerr-NUT-(A)dS spacetime.
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1. Introduction

There are several reasons why the problem of interaction of strings and branes with black

holes attracted interest recently. Fundamental strings and branes are basic objects in

string theory [1], and black holes (as well as other black objects) form an important class

of solutions of the low-energy effective action in this theory (see, e.g., [2]). On the other

hand, cosmic strings and domain walls are topological defects which can be naturally

created during phase transitions in the early Universe (see, e.g., [3 – 5]). Their interaction

with astrophysical black holes may result in interesting observational effects. In both cases

we are dealing with a problem when the interacting objects are non-local and relativistic.

An important example is an interaction of a bulk black hole with a brane representing our

world in the brane world models (see, e.g., [6]). A stationary test brane interacting with a

bulk black hole can be used as a toy model for the study of (Euclidean) topology change

transitions [7]. This model demonstrates interesting scaling and self-similarity properties

during such phase transitions, similar to the Choptuik critical collapse [8] and merger black

hole transitions [9]. These models may also have far going interesting consequences for the

study of phase transitions in quantum chromodynamics (see, e.g., [10, 11]).

Even in an idealized case, when one neglects the effects connected with the thickness of

the strings and branes and their tension, this problem is quite complicated. The reason is

evident: the Dirac-Nambu-Goto action for these objects in an external gravitational field is

very nonlinear. In a general case numerical calculations are required (see, e.g., [12]). When
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the effects of thickness and tension are taken into account these numerical calculations

become even more involved (see, e.g., [13, 14]).

Study of stationary configurations of strings and branes in a background of a stationary

black hole is simpler problem which in several cases allows complete solution. One of the

examples is a stationary string in the Kerr spacetime. It was shown [15] that the Hamilton-

Jacobi equation for such a string allows a complete separation of variables. It was also

demonstrated [16] that this property is directly connected with the hidden symmetry of

the Kerr metric generated by the Killing tensor [17] discovered by Carter in 1968 [18].

More recently, Carters’s method was applied to 5-dimensional rotating black holes and the

Killing tensor was found in these spacetimes [19]. This result was used to show that the

equations for a stationary string in the 5-dimensional Myers-Perry metric are completely

integrable [20].

In the present paper we demonstrate that this result allows a generalization to higher-

dimensional rotating black holes in an arbitrary number of spacetime dimensions. Namely,

we show that a stationary string configuration is completely integrable in the general Kerr-

NUT-(A)dS spacetimes [21]. We use the fact that after performing a dimensional reduction

along the Killing trajectories, the stationary string equation in a D-dimensional stationary

spacetime can be reduced to a geodesic equation in a (D − 1)-dimensional space with a

metric conformal to the reduced metric. The separability of the Hamilton-Jacobi equation

in this effective metric follows from the separability of the Hamilton-Jacobi equation in the

original D-dimensional Kerr-NUT-(A)dS spacetime proved in [22] and a special property

of the primary (timelike) Killing vector.

There is a natural generalization of the concept of a stationary string in the case when

there exist several mutually commuting Killing vectors. If p is a number of these fields one

may consider a (p + 1)-hypersurface generated by the Killing vectors passing through a

1-dimensional line. We call a ξ-brane an extended object, a p-brane, with the worldvolume

associated with this hypersurface. We discuss integrability conditions for ξ-branes in the

Kerr-NUT-(A)dS spacetimes [21] and give some examples of integrable systems.

2. Stationary strings

Consider a string in a stationary D-dimensional spacetime MD. Let xa (a = 0, . . . ,D− 1)

be coordinates in it and

ds2 = gabdx
adxb (2.1)

be its metric. We denote by ξa the corresponding Killing vector which is timelike at least

in some domain of MD. We call the string stationary if ξa is tangent to the 2-dimensional

worldsheet Σξ of the string in this domain. In other words, the surface Σξ is generated by

a 1-parameter family of the Killing trajectories (the integral lines of ξa).

A general formalism for studying a stationary spacetime based on its foliation by

Killing trajectories was developed by Geroch [23]. In this approach, one considers a set S

of the Killing trajectories as a quotient space and introduce the structure of the differential
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Riemannian manifold on it. The projector hab onto S is related to the metric gab as follows

gab = hab + ξaξb/ξ
2 . (2.2)

In this formalism, a stationary string is uniquely determined by a curve in S.

The equation for this curve follows from the Nambu-Goto action

I = −µ
∫

d2ζ |γ|1/2 . (2.3)

Here µ is the string tension. As it enters the Nambu-Goto action as a common factor,

its value is not important and one can always put µ = 1. The string worldsheet can be

parametrized by xa = xa(ζA), where ζA are coordinates on Σξ, (A = 0, 1). We denote by

γAB the induced metric on Σξ

γAB =
∂xa

∂ζA
∂xa

∂ζB
gab , (2.4)

and by γ its determinant.

Let Killing time parameter be t, so that ξa∂a = ∂t, and let yi be coordinates which

are constant along the Killing trajectories (coordinates in S). Then, the non-vanishing

components of the projection operator hab are hij (reduced metric) and the metric (2.1)-

(2.2) takes the form

ds2 = −F (dt+Aidy
i)2 + hijdy

idyj , (2.5)

F = gtt = −ξaξa , Ai = gti/gtt . (2.6)

From (2.2) it also follows that in these coordinates hij = gij .

We choose ζ0 = t and denote ζ1 = σ. Then the string configuration is determined by

yi = yi(σ). The induced metric is

dγ2 = γABdζ
AdζB = −F (dt +Adσ)2 + dl2 , (2.7)

where

dl2 = hdσ2 , A = Aidy
i/dσ , h = hij

dyi

dσ

dyj

dσ
, (2.8)

and it has the following determinant

γ = det(γAB) = −Fh . (2.9)

So, the Nambu-Goto action is

I = −∆tE , (2.10)

E = µ

∫ √
Fdl = µ

∫

dσ

√

Fhij
dyi

dσ

dyj

dσ
. (2.11)

In a static spacetime the equation (2.11) has a very simple meaning: The energy density

of a string is proportional to its proper length dl multiplied by the red-shift factor
√
F .
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The problem of a stationary string configuration therefore reduces to that of a geodesic

in the (D − 1)-dimensional effective background

dH2 = Hijdy
idyj = Fhijdy

idyj . (2.12)

In order to solve this geodesic problem we shall use the Hamilton-Jacobi method. That

is, we shall attempt for the additive separation of the Hamilton-Jacobi equation

∂S

∂σ
+H ij ∂iS ∂jS = 0 , (2.13)

where H ij is the inverse of the effective metric (2.12) with the components given by

FH ij = hij = gij . (2.14)

If the Hamilton-Jacobi equation can be separated, the effective geodesic motion and hence

also the stationary string configuration are completely integrable, e.g., [24].

3. Stationary strings in Kerr-NUT-AdS spacetime

In this section we prove the complete integrability of a stationary string configuration in

the general Kerr-NUT-(A)dS spacetime [21]. After a suitable analytical continuation the

metric takes the form1

ds2 =
n
∑

µ=1

[

dx2
µ

Qµ
+Qµ

(n−1
∑

k=0

A(k)
µ dψk

)2]

− εc

A(n)

( n
∑

k=0

A(k)dψk

)2

, (3.1)

with n = [D/2] and ε = D − 2n. Here,

A(k)
µ =

∑

ν1<···<νk
νi 6=µ

x2
ν1 . . . x

2
νk
, A(k) =

∑

ν1<···<νk

x2
ν1 . . . x

2
νk
,

Qµ =
Xµ

Uµ
, Uµ =

n
∏

ν=1
ν 6=µ

(x2
ν − x2

µ) ,

Xµ =

n
∑

k=ε

ckx
2k
µ − 2bµx

1−ε
µ +

εc

x2
µ

. (3.2)

Time is denoted by ψ0, azimuthal coordinates by ψk, k = 1, . . . ,m = D − n− 1, and xµ,

µ = 1, . . . , n, stand for radial and latitude coordinates. Parameter cn is proportional to the

cosmological constant [25]

Rab = (−1)n(D − 1)cn gab , (3.3)

1The physical metric with proper signature is recovered when standard radial coordinate r = −ixn and

new parameter M = (−i)1+ǫbn are introduced (for more details see [21]). As these transformations do

not affect the discussed separability of the Hamilton-Jacobi equation we prefer to work with this more

symmetric analytical continuation of the metric.
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and remaining constants ck, c, and bµ are related to rotation parameters, mass, and NUT

parameters of the black hole (see [21] for more details). The inverse metric reads

gab∂a∂b =

n
∑

µ=1

1

XµUµ

( m
∑

k=0

(−x2
µ)
n−1−k∂ψk

)2

+

n
∑

µ=1

Qµ(∂xµ)2 − ε

cA(n)
(∂ψn)2 . (3.4)

In the space with the metric (3.1) the vector ∂ψ0
, called primary Killing, plays a special

role. This vector (after the analytical continuation to the ‘physical’ spacetime) is timelike

in the black hole exterior. It is also directly connected with the principal Killing-Yano

tensor of the metric [26]. We call a string stationary if it is tangent to the primary Killing

vector. For this string one has

H ij∂i∂j = F−1

[ n
∑

µ=1

1

XµUµ

( m
∑

k=1

(−x2
µ)
n−1−k∂ψk

)2

+
n
∑

µ=1

Qµ(∂xµ)2 − ε

cA(n)
(∂ψn)2

]

,(3.5)

F =

n
∑

µ=1

Qµ −
εc

A(n)
. (3.6)

The expression in the square brackets of (3.5), the reduced metric, is similar to (3.4). The

only difference is that in the sum over k the term k = 0 is omitted. This corresponds to

the natural projection given by (2.14).

In the background of the metric Hij the Hamilton-Jacobi equation (2.13) allows the

additive separation of variables

S = wσ +

n
∑

µ=1

Sµ(xµ) +

m
∑

k=1

Lkψk (3.7)

with functions Sµ(xµ) of a single argument xµ. Substituting (3.7) into (2.13) we obtain

Fw +
n
∑

µ=1

1

XµUµ

( m
∑

k=1

(−x2
µ)
n−1−kLk

)2

+
n
∑

µ=1

QµS
′2
µ − εL2

n

cA(n)
= 0 , (3.8)

where Sµ
′ denotes the derivative of a function Sµ with respect to its single argument xµ.

Using the explicit form of F and algebraic identity [22]:

1

A(n)
=

n
∑

µ=1

1

x2
µUµ

, (3.9)

we can rewrite the last equation in the form

n
∑

µ=1

Gµ
Uµ

= 0, (3.10)

where Gµ are functions of xµ only:

Gµ = Xµ

(

S′2
µ + w

)

+
1

Xµ

( m
∑

k=1

(−x2
µ)
n−1−kLk

)2

− ε
(

L2
n/c+ wc

)

x2
µ

. (3.11)
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Applying the Lemma proved in the appendix of [27] we realize that the general solution

of (3.10) is

Gµ =

n−1
∑

k=1

Ck(−x2
µ)
n−1−k , (3.12)

where Ck are arbitrary constants. So, we have obtained the equations for S′
µ:

S′2
µ =

1

Xµ

[

n−1
∑

k=1

Ck (−x2
µ)
n−1−k +

ε
(

L2
n/c+ wc

)

x2
µ

]

− 1

X2
µ

(

m
∑

k=1

(

−x2
µ

)n−1−k
Lk

)2

−w , (3.13)

which can be solved by quadratures.

This completes the demonstration that in the general higher-dimensional rotating black

hole spacetime (3.1) the reduced (D − 1)-dimensional geodesic problem (2.11) allows the

separation of the Hamilton-Jacobi equation (2.13) and therefore the stationary string con-

figuration is completely integrable.

4. Hidden symmetries

The resulting complete integrability of the stationary string configuration in the Kerr-

NUT-(A)dS spacetime (3.1) is connected with the existence of hidden symmetries of the

(D − 1)-dimensional effective metric Hij. Namely, there exist (n − 1) irreducible Killing

tensors Cij(k), (k = 1, . . . , n− 1), which give the constants of motion

Ck = Cij(k)pipj , D(mC
(k)
ij) = 0 , (4.1)

and allow the separation of the Hamilton-Jacobi equation (2.13) in the background Hij.

In the last formula pi = ∂iS are the ‘momenta’ of geodesic motion and Di denotes the

covariant derivative with respect to Hij.

One can easily find the explicit form of Cij(k) by inverting (3.11). Let us multiply it by

A
(l)
µ /Uµ, sum over µ, and use identities [22]:

n
∑

µ=1

(−x2
µ)
n−1−k

Uµ
A(l)
µ = δlk ,

n
∑

µ=1

A
(k)
µ

x2
µUµ

=
A(k)

A(n)
, (4.2)

which are valid for l, k = 0, . . . , n− 1. Then we obtain

Cij(k) = Kij
(k) − F(k)H

ij , (4.3)

F(k) =

n
∑

µ=1

QµA
(k)
µ − εcA(k)

A(n)
. (4.4)

Here Kij
(k) are natural projections of the tensors

Kab
(k)∂a∂b =

n
∑

µ=1

A
(k)
µ

QµU2
µ

(

m
∑

l=0

(−x2
µ)
n−1−l∂ψl

)2

+

n
∑

µ=1

A(k)
µ Qµ(∂xµ)2 − εA(k)

cA(n)
(∂ψn)2 . (4.5)
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That is, similar to (3.5), the direction ∂ψ0
is projected out (the term l = 0 is omitted).

In fact, the tensors Kab
(k), (k = 1, . . . , n − 1), are the irreducible Killing tensors for the

Kerr-NUT-(A)dS metric (3.1) [26, 22]. And so one can say that the hidden symmetries of

the (D− 1)-dimensional effective metric Hij are ‘inherited’ from the hidden symmetries of

gab.

A nontrivial property which follows from the separability of the Hamilton-Jacobi equa-

tion (see, e.g., [24]) is that the constants Ck mutually Poisson commute, or equivalently,

the Schouten brackets, in the background Hij, of the corresponding Killing tensors vanish:

[

C(k), C(l)

] ijm

H
= C

n(i
(k)DnC

jm)
(l) −C

n(i
(l) DnC

jm)
(k) = 0 . (4.6)

Let us also mention that the projections Kij
(k) are the Killing tensors for the reduced

metric hij and obey
[

K(k),K(l)

] ijm

h
= 0 . (4.7)

These results can be easily obtained by separating the Hamilton-Jacobi equation in the

background of the reduced metric hij. We expect them to be more general. (For a discussion

and necessary conditions regarding the projection of a single Killing tensor see [16].)

We have seen that the existence of the Killing tensors Cij(k) for the metric Hij is the

property inherited from the metric gab (3.1). This metric possesses even more fundamental

symmetry — connected with the principal Killing-Yano tensor [28] from which all the

Killing tensors (4.5) are derivable [26]. A natural question arises whether also Hij admits

any (not necessary principal) Killing-Yano tensor.

In a general case the answer is negative. The necessary conditions for a Killing tensor

in 4D to be the ‘square’ of a Killing-Yano tensor were given by Collinson [29] (see also [30]).

One can easily check that they are not satisfied and hence, at least in 4D, the metric Hij

does not admit a Killing-Yano tensor. In higher dimensions we can exclude the existence

of the ‘special’ principal Killing-Yano tensor for the metric Hij.
2

5. ξ-branes

In the above consideration we have focused on stationary strings, that is strings generated

by a 1-parameter family of timelike Killing trajectories. There are two natural ways how

one may try to generalize this construction. First, one may consider other Killing vector

fields, and/or second, in the case when there exist more than one Killing vector, one may

consider hypersurfaces formed by the set of Killing trajectories passing through the same

1-dimensional curve. Let us discuss these generalizations in more detail.

For simplicity we assume that the spacetime MD allows p mutually commuting Killing

vectors which we denote by ξa(M), (M,N = 1, . . . , p). The Frobenius theorem implies that

for each point of the spacetime MD there exists (at least locally) a submanifold of dimension

2The special principal Killing-Yano tensor is a principal Killing-Yano tensor obeying the additional

properties as defined in [31]. It was demonstrated in [32] that the only higher-dimensional spacetime

admitting this special principal Killing-Yano tensor is the ‘generalized’ Kerr-NUT-AdS spacetime, i.e. the

spacetime different from Hij .
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p generated by the Killing vectors ξa(M) passing through this point. In other words, the set

ξ = {ξa(M)} defines a foliation of MD. Similar to what was done in the Geroch formalism

for one Killing vector field, one can define a quotient space S of M determined by the

action of the isometry group generated by ξ. This generalization of the Geroch’s formalism

was developed in [33]. The metric gab of the spacetime MD can be written as

gab = hab + Ξab , habξ
a
(M) = 0 , Ξab =

p
∑

M,N=1

aMNξ(M)aξ(N)b . (5.1)

Here aMN is the (p × p) matrix which is inverse to the (p × p) matrix aMN = ξ(M)aξ
a
(N):

aMNaNK = δMK . A tensor hab is a projection operator onto S.

Let us denote by yi (D − p) coordinates which are constant along the Killing surfaces

generated by the set ξ, and by ψM the Killing parameters defined by the conditions

ξaM∂a = ∂ψM . (5.2)

The metric gab in these coordinates (xa) = (yi, ψM ) takes the form

ds2 = hijdy
idyj +

p
∑

M,N=1

aMN (ξ(M)adx
a)(ξ(N)bdx

b) . (5.3)

In these coordinates we also have

aMN = ξ(M)aξ
a
(N) = ξ(N)M = ξ(M)N . (5.4)

A natural generalization of stationary strings Σξ are (p + 1)-dimensional objects Σp
ξ

which are formed by a 1-parameter family of Killing surfaces. We call them ξ-branes. In

(yi, ψM )-coordinates the equation of Σp
ξ is yi = yi(σ). For this parametrization coordinates

on Σp
ξ are (ζA) = (ψM , σ) (A,B = 1, . . . , p+ 1). The induced metric on the ξ-brane takes

the form

dγ2 = γABdζ
AdζB = (h+ u)dσ2 + 2dσ

p
∑

M=1

ξ(M)σdψ
M +

p
∑

M,N=1

aMNdψ
MdψN . (5.5)

Here we have defined

h = hij
dyi

dσ

dyj

dσ
, ξ(M)σ = ξ(M)i

dyi

dσ
, u =

p
∑

M,N=1

aMNξ(M)σξ(N)σ . (5.6)

In order to derive (5.5) we used (5.4).

The metric γAB can be considered as a block matrix of the form

γ =

(

A B

C D

)

(5.7)
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where A is a 1-dimensional matrix and D is a matrix (p× p). If |Z| is a determinant of a

matrix Z, then one has the following relation for the determinant of a block matrix (see,

e.g., [34])
∣

∣

∣

∣

∣

A B

C D

∣

∣

∣

∣

∣

= |D||A− CD−1B| . (5.8)

Using this equation one obtains

γ = det(γAB) =

∣

∣

∣

∣

∣

h+ u ξ(M)σ

ξ(N)σ aMN

∣

∣

∣

∣

∣

= hFξ , (5.9)

where

Fξ = det(aMN ) = det(ξa(M)ξ(N)a) (5.10)

is the Gram determinant for the set ξ = {ξ(M)} of the Killing vectors.

The Dirac-Nambu-Goto action for a (p+ 1)-dimensional brane is

I = −µ
∫

dp+1ζ
√

|γ| , (5.11)

where γ is the determinant of the induced metric on the brane γAB. For a ξ-brane this

action reduces to the following expression3

I = −µV E , dl2 = hdσ2 , (5.14)

V =

∫

dpψN , E =

∫

√

Fξdl . (5.15)

Thus after the dimensional reduction the problem of finding a configuration of a ξ-brane

reduces to a problem of solving a geodesic equation in the reduced (D − p)-dimensional

space with the metric

dH2 = H ijdy
idyj = Fξh ijdyidyj . (5.16)

If the original metric gab admits a Killing tensor Kab then, since hij = gij , the natural

projection Kij is also a Killing tensor for the metric hij . However, the full effective metric

Hij does not inherit this symmetry unless the ‘red-shift’ factor Fξ is of the special ‘separable

form’. Only then, the Hamilton-Jacobi equation (2.13) for the geodesic motion in the

metric (5.16) allows complete separation of variables.

3In our derivation we have focused on a 1-dimensional line in S generating ξ-branes. The same construc-

tion remains valid for, let us say, q-dimensional hyperspace in S in the case of a (p+ q)-dimensional brane.

Then, denoting coordinates on the worldvolume of such brane by (ζA) = (ψM , σα), (α, β = 1, . . . , q), and

repeating the same steps one would obtain

γ = det(hαβ)Fξ = hFξ , hαβ = hij
dyi

dσα

dyj

dσβ
, (5.12)

and

I = −µV E , E =

Z

p

Fξdv, dv =
√
hd

q
σ . (5.13)
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6. ξ-branes in Kerr-NUT-AdS spacetime

6.1 Separability condition

Let us discuss now the problem of integrability of ξ-branes in the Kerr-NUT-(A)dS met-

ric (3.1). There we have m + 1 Killing fields ∂ψk
, k = 0, . . . ,m and we may choose any

arbitrary subset of them as the set ξ. In general, however, the corresponding red-shift

factor Fξ will not be of the separable form.

More specifically, one requires that the red-shift factor can be written as

Fξ =

n
∑

µ=1

fµ(xµ)

Uµ
, (6.1)

with fµ functions of xµ only, in order to allow the separation of variables for the Hamilton-

Jacobi equation in the effective background Hij. The corresponding Killing tensors (k =

1, . . . , n− 1) would be then

Cij(k) = Kij
(k) − f(k)H

ij , (6.2)

where Kij
(k) are due natural projections of (4.5), with directions from the set ξ projected

out, and

f(k) =

n
∑

µ=1

fµA
(k)
µ

Uµ
. (6.3)

In the case of a stationary string, i.e. for ξ = {∂ψ0
}, the red-shift factor (3.6), the norm

of the primary Killing field ∂ψ0
, possesses the property (6.1), with

fµ = Xµ −
ǫc

x2
µ

, (6.4)

and the integrability proved in the section 3 is justified.

6.2 ξ-branes in 4D

In 4D a stationary string is the only nontrivial example of a ξ-brane for which (in these

coordinates) integrability can be proved. Indeed, as discussed in [16] only in the exception-

ally symmetric case of de Sitter space itself one can obtain the integrability of the axially

symmetric ξ-string with ξ = {∂ψ1
}.4

The last possibility of a ξ-brane in 4D Kerr-NUT-(A)dS spacetime is the axially sym-

metric stationary domain wall, ξ = {∂ψ0
, ∂ψ1

}. Let us consider this important example in

more detail. The action takes the form

I = −µ∆ψ0∆ψ1E , E =

∫

dσ

√

Hij
dyi

dσ

dyj

dσ
, (6.5)

4The asymmetry between the Killing fields is connected with the separability of the Klein-Gordon

equation, see, e.g., [16] and reference therein. In higher-dimensional spacetime (3.1) this separability was

demonstrated in [22].

– 10 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
7

where the effective 2-dimensional metric is

dH2 = Hijdy
idyj = Fξ

(

dx2
1

Q1
+
dx2

2

Q2

)

. (6.6)

The red-shift factor reads

Fξ =

∣

∣

∣

∣

∣

gψ0ψ0
gψ0ψ1

gψ0ψ1
gψ1ψ1

∣

∣

∣

∣

∣

=

2
∑

µ=1

fµ
Uµ

, (6.7)

where

fµ = x2
µXµ(X1 +X2). (6.8)

Evidently, fµ becomes function of xµ only in the case when all parameters, but c0, vanish.

Only in that trivial case the Hamilton-Jacobi equation for the axially symmetric stationary

domain wall in 4D can be separated.

The stationary string configuration remains the only one separable also in the standard

Boyer-Lindquist coordinates which can be obtained from our coordinates by the identifi-

cations given in [35].

6.3 ξ-branes in 5D

In 5D the situation is more interesting. There we can prove the integrability of the ax-

isymmetric ξ-string, ξ = {∂ψ1
}, under the condition that c1 = 0. Indeed, then the red-shift

factor takes the separable form (6.1) with

f1(x1) = 2b2x
4
1 + cx2

1 , f2(x2) = 2b1x
4
2 + cx2

2 . (6.9)

Also, the axially symmetric stationary ξ-brane, ξ = {∂ψ0
, ∂ψ1

} is completely integrable

in the case of a vacuum (c2 = 0) 5D spacetime (3.1) with c1 = 0. In that case,

f1(x1) = 4b1b2x
2
1 + 2cb1 , f2(x2) = 4b1b2x

2
2 + 2cb2 . (6.10)

In both cases the nontrivial Killing tensor responsible for the integrability is given by (6.2).

However restrictive and unlikely to be generally satisfied the condition (6.1) seems,

the above examples illustrate the special cases where complete integrability of ξ-branes

can be analytically proved. We postpone the discussion of the existence of other nontrivial

examples elsewhere.

7. Summary

We have studied integrability of the Nambu-Goto equations for a stationary string config-

uration near a higher-dimensional rotating black hole. In a general stationary spacetime

this problem reduces to finding a geodesic in the effective (D− 1)-dimensional background

Hij . In the Kerr-NUT-(A)dS spacetime (3.1) the geodesic equation can be integrated by

separation of variables of the corresponding Hamilton-Jacobi equation. This separability

is a consequence of the fact that Hij inherits some of the hidden symmetries of the black

– 11 –
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hole. Namely, it inherits (n−1) irreducible mutually commuting Killing tensors which cor-

respond to natural projections of the Killing tensors present in gab. In a general case there

are no (antisymmetric) Killing-Yano tensors generating these (symmetric rank 2) Killing

tensors.

The problem of integrating of equations for ξ-branes is more complicated. We gave

some examples where these equations are completely integrable, but in the general case

the complete integrability is not possible. It would be interesting to find other, physically

interesting, examples of completely integrable ξ-branes in higher dimensional black hole

spacetimes. It is also interesting to study cases where there exist non-complete but non-

trivial sets of (quadratic in momenta) integrals of motion for ξ-branes related to the hidden

symmetries of the black hole background.
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[26] P. Krtouš, D. Kubizňák, D.N. Page and V.P. Frolov, Killing-Yano tensors, rank-2 Killing

tensors and conserved quantities in higher dimensions, JHEP 02 (2007) 004

[hep-th/0612029].
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